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Abstract  

The implications of Segletes' recent equation of state are examined, when idealized to the 
condition defined as quasi-harmonicity. Results indicate that at large volumetric strains, a 
proportionality no longer holds, in general, between the volumetric and vibrational stiffnesses. 
The governing relation between these two stiffnesses is presented and is a function of the 
characteristic frequency of the lattice, alternately expressed in terms of the lattice spacing. It is 
further shown that the quasi-harmonic idealization of Segletes' equation will approach the 
harmonic approximation in the limit. 
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1.  Background 

The harmonic approximation has been the traditional method to analyze atomic vibrations and 

lattice behavior, dating back to Planck. Several years later, in the early 1900s, Einstein, Debye, 

and Born and von Karman [1] used the approximation to develop theories of lattice specific heat. 

In the years that followed, Brillouin [2] also employed the harmonic approximation to analyze 

wave propagation in lattice structures. 

In the harmonic approximation, atoms vibrate with sinusoidal motion. In order for an atom 

within the crystal lattice to retain this harmonic behavior, the specific potential energy well of 

the lattice, Epot(r), must be parabolic in shape, where r is the coordinate of the atom in question 

within the lattice. Specifically, AEp0! ~ (r - r0)
2. Under these conditions, the restoring force to 

the atom is proportional to its displacement from the rest position, and the resulting oscillatory 

motion of the atom is sinusoidal—that is to say, harmonic. The harmonic motion of an atom has 

a single frequency associated with it, co0, and that frequency is calculable, just as in macroscopic 

vibration theory, by the relation (öQ = (-dP/dr) IM, where M is the mass of the atom, P is the 

restoring force, and -dP/dr is the local spring constant in the direction of the disturbance, which, 

for the harmonic case, is independent of position. If a lattice of vibrating atoms is considered, 

rather than just a single oscillating atom, a whole spectrum of frequencies is shown to arise in 

the lattice. Furthermore, in a three-dimensional (3-D) lattice, for every frequency of the spectrum 

associated with a disturbance in the direction of the wave propagation (a longitudinal wave), there 

are two vibrational components associated with disturbances perpendicular to the direction of 

wave propagation (shear waves). 

Let us remember, now and throughout this report, that vibrations are the means by which 

internal (i.e., potential) and kinetic energy are exchanged in a spring. Every type of vibration, 

no matter how complicated kinematically, has an associated spring constant (or alternately, wave 

speed) and displacement variable. The derivative of the spring's potential energy with respect 

to the displacement variable is known as the "force," and the derivative of the force with respect 

to this displacement variable is the local spring constant (or stiffness), which governs the 

vibrational frequency for infinitesimal vibrations of the spring. 



An early, important result of lattice-vibration theory was in showing that vibrational energy 

in a lattice can manifest itself as thermal pressure only if the lattice vibrational frequencies 

change with lattice deformation—that is to say, if the potential energy well is not parabolic in 

shape. This condition of nonparabolicity is referred to as anharmonicity. Likewise, nonparabolic 

terms in a Taylor expansion of the potential energy well about the reference lattice spacing are 

called anharmonic terms. In practical terms, the empirical metric for anharmonicity usually 

entails measuring the nonparabolicity of the lattice's energy well only at the reference lattice 

spacing (e.g., the method used by Rose et al. [3]). Here and throughout this report, the reference 

condition is one of zero temperature and pressure. 

Quantitatively, a lattice's vibrational energy gets coupled into thermal pressure by way of the 

Grüneisen function, macroscopically defined as T = V(dp/dE)v, where Vis the material's specific 

volume, and p and E are the pressure and specific energy of the material, respectively. From 

lattice theory, there is a Grüneisen value associated with each vibrational frequency in the lattice, 

given by the following expression and taken at constant temperature, T: 

T..-L 
(0. 

f       \ 
d(0 

dV 
(1) 

JT 

where T, is the Grüneisen value associated with the frequency, (0„ of a longitudinal or transverse 

(i.e., shear) vibration. Were the r, values for each frequency truly independent of each other, the 

macroscopically observed T value, being an aggregate of all the T,, would be very difficult to 

characterize in terms of the individual T,. However, one fortunate simplification to the problem 

arises from Grüneisen's assumption, which was originally made based on empirical data and later 

supported theoretically by the lattice theory of Debye. The assumption asserts that the whole 

spectrum of lattice vibrational frequencies changes in a characteristically similar fashion with 

lattice spacing, so that the knowledge of how one characteristic frequency changes with volume 

defines the behavior of the complete vibrational spectrum. The effect on eqn (1) is to remove 

the '/' subscript, with the resulting equation being characteristic of the behavior of the complete 

vibrational spectrum.  From the early theories of specific heats, this characteristic frequency (a 



microscopic quantity) was shown to be directly proportional to a characteristic temperature, 0 

(a macroscopic quantity). Thus, it is common to find, in the literature, an interchangeable use 

of the expressions (CD/O)0) and (0/0o), where the "0" subscript refers to the reference value. 

Another simplification is afforded by the approximation, supported by data, that, for solids in the 

absence of phase change, eqn (1) is independent of temperature, so that the partial derivatives 

in eqn (1) become ordinary. In this case, T, to, and 0 all become functions of specific volume 

only. Work in the area of a temperature-dependent Grüneisen function was done by both 

Blackman [4] and Barron [5], who examined and modeled the variation of T with temperature 

at low values of temperature (770 «1) and found mild variations. Later, Grodzka [6] 

summarized work, using the compression of porous media, which indicated that some materials 

(notably aluminum) seem to have a significant decrease in T at elevated temperatures. Aluminum 

aside, the temperature independence of the Grüneisen parameter, while empirical, seems valid 

over a wide range of conditions and solids. 

Even with the simplifications afforded by the temperature-independent, coupled frequency 

form of eqn (1), the difficulty still arises of how to describe the anharmonic behavior of lattices, 

given that the prevailing theories describing their fundamental behavior are based on harmonic 

approximations. Slater [7] and later Dugdale and MacDonald [8] used the harmonic 

approximation as a basis to develop anharmonic theories of the Grüneisen function. 

To better understand the model of Dugdale and MacDonald [8], as well as more recent work, 

let us construct a framework for analyzing anharmonic vibrations. Given a simple spring-mass 

system, consider replacing the linear (harmonic) reference spring with a nonlinear (i.e., 

anharmonic) spring. Vibration theory may be used to compare the frequencies of vibration for 

these two systems. Though the frequency of vibration for a nonlinear spring changes with 

amplitude, the situation of low-temperature atomic vibrations may be likened to the situation of 

a spring experiencing infinitesimal vibrational amplitudes superimposed about a nominal spring 

extension. In fact, the notion of thermal expansion in a solid is directly analogous to a nonlinear 

spring, in that, as the temperature is raised, the vibrational amplitude increases, and as the 

amplitude increases, the nonlinearity of the spring causes the average spring extension 

(i.e., density) to change, even though the nominal applied force remains constant. The nominal 

spring extension is analogous, in a lattice, to the atomic spacing relative to the reference 



configuration, and the small vibrational oscillations that occur do so about this deformed 

configuration. Under this condition of infinitesimal vibrations, corresponding to the low- 

temperature condition of the lattice, the vibrational frequency of a nonlinear spring is obtainable 

by way of perturbation theory (i.e., by linearizing the problem and considering small 

perturbations in displacement about the nominal extension). For a given mass, the local spring 

stiffness determines the vibrational frequency of the spring and is given by the local slope of the 

force-displacement curve for the spring, which is a function only of the current spring extension. 

Thus, the relationship that governs how the frequency response is altered by substituting the 

anharmonic spring for the harmonic reference spring is given as 

(02 «V l 
dF/dx      dFref/dx M 

(2) 

where the "re/" subscript refers to the reference, harmonic spring. 

To further extend the spring analogy to a lattice of atoms, consider the case of a 3-D lattice 

of spring-connected identical masses. In the general case, the lattice may support physical 

motion both in the direction of, as well as transverse to, the direction of wave propagation. 

Furthermore, to be general, we allow the lattice/spring topology to include diagonally connected 

masses, such that a displacement in one direction may induce force and/or motion in the 

perpendicular directions. In this general case, the vibrational frequency spectrum of the spring- 

connected lattice includes components due to both longitudinal and transverse vibrations. Such 

a frequency spectrum, aggregated of both the longitudinal and transverse spectra, is directly 

analogous to that found in actual solids. Brillouin [2] has shown that, if a Debye frequency 

spectrum is assumed for a material, the aggregated characteristic temperature (frequency) is 

describable as a composite of the longitudinal and transverse frequency spectra as follows: 

(3) 1         2 3 
+   = 

0'       0' ©3 



Others [9,10] have accomplished a similar result by relating an aggregate of longitudinal and 

transverse wave-propagation velocities (related to their associated frequency, (a, and wavelength, 

X, via C = u>K) directly to the Grüneisen function (related to the frequency spectrum by eqn [1]). 

For example, Pastine [9] provided this relation as 

T = 1/3 [113-(VIC^dCJdV] + 2/3[l/3-(V/Ct)dCJdV]   , (4) 

where C, and Ct refer to the longitudinal and transverse wave speeds, respectively. By relating 

these component wave speeds to variations in the Poisson ratio, Pastine was able to derive a 

Grüneisen expression as a function of Poisson's ratio and showed, for the special case of a 

monatomic face-centered cubic crystal, a result quite close to the theoretically derived result of 

Barron [5]. However, for the general case, no guidance was offered on appropriate selection of 

functional forms. Vashchenko and Zubarev [10] adopted a similar approach, but assumed a 

particular fitting form for the Poisson ratio, in terms of the cold pressure curve and a fitting 

parameter. 

Unlike these other approaches, Plendl [11] considered the measured frequency spectra for real 

materials, as opposed to using idealized relationships like eqns (3) and (4). Rather than 

attempting a decomposition of the spectrum into longitudinal and transverse components, he was 

able to bypass such an approach and show that the characteristic frequency of a material is that 

frequency at the center of gravity of the frequency spectrum, /(co), the so-called "centro- 

frequency," which is given by 

w2 

j tö/(tO)dü) 

CO. 
w, 

/((O)d(D 

(5) 



where the frequency range of integration is selected to comprise the entire range of the acoustical 

vibration spectrum. 

The current analysis follows the lead of Plendl, in that no explicit decomposition of the 

vibrational spectrum into longitudinal and transverse components will be performed. The mere 

fact that a characteristic frequency may be aggregated, in some manner, from the longitudinal and 

transverse frequency spectra (by way of eqn [3], [4], [5], or otherwise) allows us to introduce the 

concept of a vibrational spring constant, dFvib/dx, which is, by definition, the spring constant that 

characterizes the aggregated (longitudinal plus transverse) vibrational frequency spectrum. If a 

lattice had no diagonal coupling and didn't support transverse (shear) waves, the characteristic 

vibrational stiffness would simply reduce to the stiffness of the component longitudinal spring. 

The vibrational spring constant will, like the stiffness of a nonlinear spring, be a function of the 

nominal lattice spacing. By way of this construct of the vibrational spring constant, eqn (2) may 

be generalized to case of a 3-D coupled lattice: 

CO2 toref 

MJdx      *FJdx 
(6) 

where, now, w is a characteristic frequency of the vibrational spectrum, rather than the specific 

frequency of the component spring. 

Let us analyze a lattice where the specific unit lattice spacings (i.e., length per cube-root unit 

mass) along the principal lattice directions, x, v, and z, are expressed in terms of the specific 

volume of the unit cell as V=X3 = xyz, where A, is an averaged unit lattice spacing per cube-root 

unit mass. For the case of zero-temperature volumetric compression or distention, a specific 

force may be defined as that force (per 2/3 power unit mass) acting on the face of a unit cell of 

the lattice, given as F=pc'k
2=pcV'2J3. In this definition,pc is the cold (0° isotherm) pressure and, 

thus, the force is positive in compression. 

If nothing else were known of the vibrational frequency spectrum, it would be natural to 

investigate the proportionality ofdFvib/dx and dFldk, since, for a one-dimensional (1-D) harmonic 



lattice, these two quantities would, in fact, be identically equal. The assumption that the 

characteristic vibrational stiffness of a 3-D spring can be made proportional to an associated 

volumetric stiffness has been pervasive throughout the literature. When Debye theory indicated 

that the characteristic frequency varied as an aggregate of the elastic wave speeds, Slater [7] 

assumed a constant Poisson ratio and related the aggregated vibrational stiffness (in terms of 

wave speeds) directly to volumetric compressibility (although Slater actually concluded something 

closer to [but not quite] u2~-dpldk rather than -dFldk). Brillouin [2] derives results utilizing 

m2~d2EJdk2, the right-hand side being merely -dFldk. It will be shown that Dugdale and 

MacDonald [8] also utilized this proportionality. More recently, Guinea et al. [12] explicitly 

assumed this proportionality when trying to infer a relationship between the universal cold curve 

and the Grüneisen function. 

The effect of such an assumption of proportionality on eqn (6) is that a dFldk term may be 

substituted for each dFldx. With this substitution, the derivatives with respect to k are 

convertible to volume derivatives through the chain rule, 

dFldk = dF/dV-dVldk = (pV^ySV2"   , (7) 

where the prime symbol (') denotes ordinary differentiation with respect to specific volume. 

With this substitution, eqn (6) becomes 

to2 «£/ 
(py^y   w*y 

(8) 

If one takes the volume derivative of eqn (8) and divides the result by eqn (8) itself, one obtains 

,d«>/dv   (pvmr _ n äiojdv   (prefv-r (9) 

co (Py™)> core/ (PrefV™)>   ' 



The first term from each side of the equation is related to the Grüneisen function and may be 

substituted, using the temperature-independent, characteristic-frequency form of eqn (1), to obtain 

2£ = -KPc     }    + 2J± +  KPnf     J    . (10) 
v      (pv^y       v     (Prefv»y 

At this point, the values for the harmonic, reference spring may be substituted. As already 

mentioned, the value for T in a harmonic system is identically zero, since co is constant, and the 

last term involving the pressure behavior of the reference system may be acquired using the 

definition pref = -dEref/dV, where Eref is the parabolic energy well expressed in terms of V rather 

than x. The result is the well-known Dugdale-MacDonald relation: 

1       V (P Vm)" 
r = -I -       c        . (ii) 

3 2   (nP)' 

Inserting the harmonic energy potential into this equation results in a Grüneisen value of zero. 

Such a result illustrates the criticism, by Dugdale and MacDonald [8], of the model of 

Slater [7]—namely, that inserting the harmonic cold curve into Slater's model does not produce 

the required value of T = 0. 

This report will show, on the basis of Segletes' recently proposed equation of state, that, for 

a 3-D lattice, the presumed proportionality between the volumetric and vibrational stiffness, 

which has pervaded the literature and leads to the model of Dugdale and MacDonald, is strictly 

true only in the harmonic limit of approximation. Force-based, vibrational and volumetric moduli 

will be compared, for the idealized case of quasi-harmonicity (defined in the next section), with 

the more general case to be addressed in a subsequent report. Finally, the quasi-harmonic 

idealization of Segletes' equation of state will be shown to approach the harmonic approximation 

as the Grüneisen function approaches zero in the limit. 



2.  Segletes' Equation of State and the Quasi-Harmonic 
Idealization 

Recently, Segletes [13, 14] proposed an equation of state, of Grüneisen form, that properly 

captures both the lattice-potential and thermal pressure behavior for a variety of crystalline 

materials, into the megabar range of pressures. The model was inspired by the universal cold 

curve of Rose et al. [3]. However, unlike the model of Rose and other recent equation-of-state 

models, (e.g., Vinet et al. [15, 16]; Baonza, Cäceres, and Nunez [17]; and Baonza et al. [18]), 

the model of Segletes casts the lattice energy potential in terms of the characteristic temperature 

of the lattice (i.e., the lattice vibrational frequency), rather than lattice spacing (density). The 

equation of state is given as 

py - E = Eb{[(0/0of - l] + K(K - 1) (0/0o)* ln(0/0o) }   . (12) 

In this equation, p and E are the pressure and specific internal energy respectively, K is a 

parameter, given by  C0/(T0iß^~), where C0 is the reference bulk sound speed at zero 

temperature and pressure, Eb is the specific lattice binding energy, and \\r = V/T = (dE/dp)v is a 

thermodynamic variable introduced by Segletes [19, 20] for ease in manipulating the governing 

equations. In terms of this variable, \jr, the temperature-independent, coupled-frequency form of 

eqn (1) is given as 

* - -1  . 03) 
0 \|T 

where the proportionality between 0 and (0 has been utilized.   The generalized cold curve 

associated with eqn (12) is 

Er = Eh{\ - (0/0J* [1 - lHn(0/0o)]} (14) 



and 

E K2 

_2 (0/0J* ln(G/0o)   . (15) 

When the K parameter takes on a value identically equal to unity and the Grüneisen function 

varies as T~V113 (i.e., T~X), the equation takes on behavior that will hereafter be called quasi- 

harmonic. If we denote the variables of the quasi-harmonic equation of state as hatted 

quantities (A), the quasi-harmonic cold curve becomes 

Ec = Eb{\ - (0/0o) [1 - ln(0/0o)]} (16) 

with the Grüneisen requirement translating to 

tpr ~ V™   . (17) 

Eqns (16) and (17) are interpreted as quasi-harmonic for a number of reasons. It is 

immediately obvious that, when K equals unity, many terms drop out from the general equation 

of state, eqn (12), and the equations become greatly simplified. Furthermore, Segletes and 

Walters [21, 22] examined the equation of state using a simple power law, Vx, to model the \y 

function. They noted that, over a wide range of anharmonicity, the exponent, x, required to fit 

well the model of Rose et al. [3], varied linearly with Rose's anharmonicity parameter, T|. 

Though it did not match precisely in the limit, an exponential relation of \t~ Vm was the limiting 

trend for the case where Rose's anharmonicity, T), approached zero. Segletes and Walters also 

showed, for the case of K= 1 and i$r ~ Vm (the quasi-harmonic case), that the Segletes equation 

of state satisfies the relation 

(pcV™) + {2 + 2/3W/V)}y(py2/3y + ^(pcV
m)" = 0   , (18) 

whereas the Dugdale-MacDonald relation, eqn (11), noted for its harmonic limiting behavior, 

10 



satisfies 

[2 + 2/3 (w/V)} v (pcV™y + ^ (p Vmr = 0   . (19) 

Eqns (18) and (19) differ by only the first term of eqn (18). 

In a subsequent report, Segletes will treat the more general form of his equation of state, by 

showing that the K parameter in eqns (12), (14), and (15) must, for real materials, be a (slowly 

varying) function of volume, which asymptotes to the quasi-harmonic case in the large-volume 

limit. In the meantime, the cause of the disparity between the idealized form of Segletes' model 

and that of Dugdale and MacDonald [8] will be shown to arise from the fact that, for large 

volumetric strains, the volumetric and vibrational stiffnesses, dFldk and dFvib Idx, respectively, 

are not proportional. 

3. Force-Based Moduli 

The interactions within a lattice are governed by forces acting over distances. On this basis 

alone, force and distance would seem to be the natural variables governing the interactions within 

a lattice. More compelling, however, is the fact that Segletes' equation of state shows a very 

distinct preference for being analyzed in a force-based framework. Eqn (18) is just one example 

of how, time and again, the term grouping (pc V2'3), which is the force on the face of the lattice 

unit cell (per 2/3 power unit mass), appears. It is for this reason that subsequent results will be 

analyzed in a force-based framework, by which it is meant that moduli will be expressed in terms 

of force gradients, rather than stress gradients. To this end, force-based moduli will be defined 

for a zero-temperature lattice, at an arbitrary volumetric compression or distention, under the 

influence of an infinitesimal, superimposed, elastic disturbance. 

In a force-based frame, a modulus, with units of stress, may be associated with a given spring 

constant. From considerations of dimensional analysis, the modulus should be of the form spring 

constant divided by characteristic length. Alternately, a force-based modulus, associated with the 

volumetric spring constant, dFldk, for example, may be defined by starting with the stress-based 

11 



modulus definition (i.e., bulk modulus), substituting a force term for the stress (pressure) term, 

and dividing the result by the specific area (i.e., area per 2/3 power mass) over which the force 

is acting. For a lattice that is only deformed volumetrically, this area is A2, the specific volume 

to the 2/3 power.  Thus, 

B   - -LJL. - -V™d(P<V2/3)  = -±£. (20) 
F X2 dV/V dV 3X dk 

Comparison of the stress-based bulk modulus, B, and the force-based one in eqn (20) reveals that, 

in general, BF = B- 2pc/3. Under conditions where the pressure and temperature are zero, the 

force-based volumetric modulus will equal the stress-based bulk modulus in value. 

Turning now to the vibrational spring constant, dFvibldx, an associated force-based modulus, 

call it JF, may be defined. As in the case of the vibrational spring constant itself, this modulus 

implicitly includes the effects of both longitudinal and shear waves. For a cubic lattice, it is 

given, in terms of X, by 

JF = 

( \ 
1   ^vib 

yz dxlx)x^x k   dx 

1   dF .. 1       v* (21) 

4. The Relation Between the Volumetric and Vibrational Moduli 

We will summarize what is known of the problem at hand by enumerating a list of statements 

already discussed, so that subsequent reference may conveniently be made to the ideas contained 

in the following statements: 

(1) In a Grüneisen material: 

(a) the vibrational spectrum of a lattice is composed of longitudinal and transverse (shear) 

12 



vibrational components.     This  spectrum may be characterized either in terms of 

characteristic wave speeds or by a characteristic frequency; 

(b) the characteristic frequency of the vibrational spectrum varies with volume in the same 

manner as the characteristic temperature, ü) ~ 0; and 

(c) the characteristic temperature, 0, is related to the \|/ function (and thus F) by way of 

eqn (13). 

(2) The characteristic frequency, w, of the vibrational spectrum of a lattice may be directly 

related to an associated spring constant, designated dFvib Idx, of a material, such that the 

characteristic frequency varies as 0)2 ~ dFvib Idx.   This spring constant may be alternately 

expressed as a vibrational modulus, designated JF, and defined in eqn (21). 

(3) The volumetric stiffness, dF/dk, is directly derivable from a material's equation of state, and 

may be alternately expressed in terms of a volumetric modulus, BF, defined in eqn (20). 

(4) Segletes' equation of state, which fits the behavior of crystalline solids very well, expresses 

the behavior of the lattice in terms of relative characteristic temperature, 0/0o. Since the 

characteristic temperature (frequency) function is governed by the vibrational stiffness, 

dFvib Idx, this equation of state may be used to compare directly the volumetric and vibrational 

stiffnesses. 

(5) Segletes' model, eqn (12), may be idealized to an important special case, termed the quasi- 

harmonic idealization, which is characterized by: 

(a) a value of the parameter, K, equal to unity; and 

(b) a \|r function that varies as V273. 

From the cold-pressure curve of Segletes' equation of state, eqn (15), derivatives may be 

taken, to show that 

13 



E   K2VW 

(p v3*)' = --1 (@/G0f fe+\|/-2/3(\]//V)]ln(0/eo) + l}   . (22) c \f- K 

For the quasi-harmonic idealization, defined by statements 5a and 5b, eqn (22) reduces to 

E,V 2/3 

(pc V™)> = - _L_ (0/0o) (ln(0/0o) + l}   . (23) 
Vjjr 

If the ^ function.is quantified as i$r = (V0
1/3/f0) V213, in accordance with the definition of \|/ and 

statement 5b, then the dFldk function is given as 

^ F P2 

dFldk = 3 V213 (pc V™)' = L_i (0/0o) (ln(6/60) + l}   . (24) 
Vo273 

We see here why the quasi-harmonic case is an important one—namely, because the interatomic 

force and its spacial derivatives vary only with the characteristic frequency and not explicitly as 

a function of lattice spacing (A, or V). The relative ratios of the zero-temperature vibrational and 

volumetric stiffnesses may be compared as a function of characteristic temperature ratio and are 

displayed in Figure 1. The upper curve, for vibrations, is parabolic since (according to statements 

lb and 2) it is the spring constant which governs the characteristic frequency (and thus 

characteristic temperature). The lower curve, derived from Segletes' model for the quasi- 

harmonic case, relates the relative volumetric stiffness to the characteristic temperature. Were 

these two curves to overlay, the model of Dugdale and MacDonald [8] would prevail. As it is, 

the vibrational and volumetric stiffnesses for a quasi-harmonic, 3-D lattice do not remain 

proportional, though they do so approximately near the reference density. 

Eqn (24) expresses the volumetric stiffness in terms of the quasi-harmonic, characteristic 

temperature of the lattice. A converse relationship may be obtained by starting with eqn (18), 

and  making  the  substitution  in  the  bracketed  term  that,  for the  quasi-harmonic  case, 

14 



tp7 = 2/3 (tpr/V).  Employing the fact that F = pcV
2/3, the resulting equation may be rearranged 

to give 

1   =  ftfrF" + (1 +1;) F') 

IF (tjlrF7 + F) 
(25) 

A./, A The left side of the equation is, by way of eqn (13), 0 /©. Similarly, the numerator of the right 

side of the equation is also the volume derivative of the denominator.  Thus, we see that 

0   ~   tyF' + F   =   J^E. + F , (26) 
J *■ o 

which expresses the characteristic frequency in terms of the lattice cell force and its spatial 

derivative. 

To put the comparison in yet another perspective, in terms of the moduli, we compute, from 

eqns (20) and (24), that BF/B0F = (y?O(0/0o)[ln(0/0o)+l]. Likewise, from eqn (21) and 

statements lb and 2, we know that JF/J0F = (k0/K)(&/®0)
2. We will assume now the initial 

condition, that J0F = B0F. This assumption corresponds, for a 3-D lattice, to the situation where 

{dFldk\ equals 3 {dFJdx\ .   If this assumption should subsequently prove wrong, the sole 

effect will be that eqns (27) and (30), to follow, will be off by a constant multiplier. The force- 

based volumetric and vibrational moduli, for the quasi-harmonic case, may thus be directly 

related as 

BJJ. = F" F 

[ln(0/0o) + 1] 

(6/0o) 
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A graph of this function is shown in Figure 2, as a function of the quasi-harmonic, relative 

characteristic temperature, <s)/<s)0. This figure indicates the functional relationship between the 

force-based volumetric and vibrational moduli for the quasi-harmonic case. 

Alternately, this relationship may be expressed as a function of specific volume ratio, by 

converting characteristic temperature to specific volume. By starting with the quasi-harmonic 

\|/ function, given by 

$ = (V™/t0) v
m   . <28) 

one may integrate according to eqn (13) to ascertain the logarithm of the quasi-harmonic 

frequency function: 

ln(6/d0) = 3f0[l - (V7V0)
1/3]   . (29) 

Interestingly, the quasi-harmonic eqn (29) is proportional to the negative of the a* parameter 

employed by Rose et al. [3], as the nondimensional lattice parameter in their universal cold 

curve. The model of Rose et al, which was the inspiration for Segletes' equation of 

state [13, 14], expresses cold energy in terms of compression and is seen from eqn (29) to relate 

closely to the quasi-harmonic case idealized from Segletes' model. However, unlike Segletes' 

equation of state, Rose's model does not include thermal pressure effects required for a complete 

equation of state and has no provisions for Segletes' general case, which is not quasi-harmonic. 

Exponentiation of eqn (29) provides the characteristic temperature ratio. The quasi-harmonic 

characteristic temperature ratio tells exactly why the real world is not quasi-harmonic—because, 

in the quasi-harmonic case, there is a maximum limiting frequency ratio at vanishingly small 

volumes, given by (Ö^/^) = exp(3f0). Such a frequency limit would translate into a cold- 

compression energy limit, as well. According to various high-compression theories that include 

electronic effects, finite cold-compression energies under infinite compression do not occur in 

actual materials.    Such limiting compressive behavior, though absent in actual materials, 
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characterizes both the model of Rose et al. [3], as well as the quasi-harmonic idealization. A 

subsequent report will address how actual materials may be described by Segletes' theory, by 

departing from the tenets of the quasi-harmonic idealization. In the report to appear, the author 

intends to show that the data support the notion that, as lattice spacing increases, the behavior 

of all lattices approaches the quasi-harmonic idealization, and that a departure from this ideal 

occurs as the lattice spacing becomes small enough to permit interatomic repulsive interactions. 

Substitution may be made into eqn (27), in order to express the volumetric to vibrational 

modulus ratio, in terms of specific volume, as 

B ,}  , «»3f0[l-(Wy.)"]>   _ 
'F'"F exP{3r0[i - <y/v0n> 

This relationship is depicted in Figure 3 with the reference, quasi-harmonic Grüneisen parameter 

value, f0, as a parameter. The figure shows that, only as f0 is made to approach zero, does the 

quasi-harmonic, zero-temperature, volumetric to vibrational modulus ratio approach a constant 

value (of unity). The quasi-harmonic lattice force, F= (pcV™), may also be expressed in terms 

of lattice spacing, rather than frequency, through the use of eqns (15) and (29) and the definition 

that?i=V1/3: 

F = Eb(t0/\) cxV[3(r0/X0)(X0-X)][3(t0/X0)(\-X)]   . (31) 

It is also revealing to study the quasi-harmonic, cold-energy curve, not as a function of 

frequency, as given in eqn (16), but likewise in terms of relative lattice spacing, using eqn (29) 

and the relation between X and V. Figure 4 plots this relation with the reference quasi-harmonic 

Grüneisen parameter, f 0, as a parameter. The energy has been normalized by its limiting (V = 0) 

cold-compression energy, which is finite for the quasi-harmonic case, but will not be so for real 

materials. The figure clearly shows that, as the reference Grüneisen parameter approaches zero, 

the quasi-harmonic idealization of Segletes' equation approaches the harmonic case, consistent 
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with Dugdale and MacDonald [8] theory, as already shown for T = 0. Kittel [23] indicates that, 

according to harmonic theory, there is no thermal expansion, and the elastic constants are 

independent of pressure (and temperature). A zero Grüneisen function follows from a zero 

thermal-expansion coefficient. Thus, the constant ratio of the elastic moduli in Figure 3, for the 

limiting case of f0 = 0, is further evidence of compatibility with harmonic theory. Furthermore, 

dFvib/dx and dFldk are proportional for only this limiting case and this proportionality is exactly 

what would occur for a 3-D lattice of atomic masses connected by simple linear springs.   In 

short, the quasi-harmonic idealization approaches the harmonic limit as f approaches zero. 

The harmonic condition has been traditionally expressed by stipulating the potential energy 

well to be parabolic, 

d?E pot = 0   , (32) 
dk3 

thus resulting in a constant characteristic frequency and an identically zero Grüneisen function. 

We see now that the harmonic approximation is merely the limiting case of the quasi-harmonic 

idealization of Segletes' equation of state, when the value of the Grüneisen function is made to 

approach zero in the limit. The quasi-harmonic potential, given by eqn (16), satisfies the 

following relation: 

d2 

dk2 
pot 

0 
= 0   , (33) 

where Epov the potential energy well of the lattice, is the lattice cold energy relative to the infinite 

lattice separation condition, or Epot = Ec-Eb. 
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5. Conclusions 

The historical use of the harmonic approximation in the study of lattice dynamics has been 

briefly reviewed to include the development of the Dugdale-MacDonald model of anharmonic 

lattice behavior. It is shown how, in the case of the model of Dugdale and MacDonald [8], 

results rely on a certain assumption about the governing elasticity—an assumption that follows 

from 1-D theory wherein the vibrational and volumetric stiffnesses are proportional. This 

assumption has been widely adopted by prior treatments of the subject, but has been shown to 

be inadequate to describe the behavior of a 3-D lattice at large volumetric strain, perhaps as a 

result of lateral (Poisson ratio) coupling, transverse (shear) waves and/or the presence of non- 

nearest neighbor interatomic interactions. 

The relationship between vibrational and volumetric moduli has been studied using the quasi- 

harmonic idealization of Segletes' equation of state. The quasi-harmonic idealization is one in 

which the form of Segletes' equation of state is greatly simplified, while the Grüneisen function 

takes on a specified, idealized, functional behavior. In the quasi-harmonic idealization, the 

interatomic force and its spacial derivatives vary only with the characteristic frequency of the 

lattice and not explicitly with the lattice spacing. 

Results indicate that the relationship between the vibrational and volumetric moduli (and their 

associated natural frequencies) are of different form. In the vibrational case, the stiffness, 

according to vibration theory, goes as to2, whereas for volumetric distortions of a 3-D lattice, it 

may be inferred from the idealized form of Segletes' equation of state that the volumetric 

stiffness goes as w[l +ln((o/0)0)]. It is this disparity that causes the primary difference between 

the model of Segletes and previous work by Dugdale and MacDonald [8]. 

The idealized Grüneisen relationship that governs quasi-harmonic behavior is such that a 

quasi-harmonic lattice reaches a limiting cold-compression energy (and associated vibrational 

frequency) in the limit of vanishingly small volume. Such idealized behavior, though not 

indicative of real materials, is compatible with the theory of harmonic lattice vibrations. This 
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report explicitly shows that the quasi-harmonic idealization, for the limiting case where the 

Grüneisen function approaches zero, actually approaches the harmonic approximation. 

In a subsequent report, the author intends to address how real material behavior may be 

described in the framework of Segletes' equation of state, by departing from the quasi-harmonic 

idealization, and how, as lattice spacing increases, the quasi-harmonic idealization is approached 

for real lattices. Such a result is wholely compatible with the conclusions of Plendl [11], who 

asserts that anharmonicity is "mainly caused by the forces of repulsion..., but is close to zero 

when ions deviate from one another," (i.e., when X>'k0). 
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10.0 

Figure 1. Relative values of the vibrational (dFvib/dx) and volumetric (dF/dk) stiffnesses, as a 
function of the relative characteristic temperature (or frequency), for a material 
obeying the quasi-harmonic idealization. 

Figure 2. Ratio of volumetric to vibrational (force-based) moduli, as a function of the relative 
characteristic temperature (or frequency), for a material obeying the quasi-harmonic 
idealization. 
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Figure 3. Ratio of volumetric to vibrational (force-based) moduli, as a function of relative 
volume, for a material obeying the quasi-harmonic idealization. Six curves are 
shown, corresponding to different values of the reference Grüneisen parameter, T0. 
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ATTN K LOGAN 
ATLANTA GA 30332-0245 

IOWA STATE UNIVERSITY 
DEPT PHYSICS AND ASTRONOMY 
ATTN JIM ROSE 
34 PHYSICS 
AMES IA 50011 

JOHNS HOPKINS UNIV 
APPLIED PHYSICS LAB 
ATTN TERRY R BETZER 
ALVIN R EATON 
RICHARD H KEITH 
DALE K PACE 
ROGER L WEST 
JOHNS HOPKINS ROAD 
LAUREL MD 20723 

MIT DEPT OF EARTH ATMOS AND 
PLANETARY SCIENCES 
ATTN HEIDI B HAMMELL 54 316 
CAMBRIDGE MA 02139 

NC STATE UNIVERSITY 
ATTN YASUYUKI HORIE 
RALEIGH NC 27695-7908 

PENNSYLVANIA STATE UNIVERSITY 
ATTN   PHYSICS DEPT 
UNIVERSITY PARK PA 16802 

SOUTHWEST RESEARCH INSTITUTE 
ATTN C ANDERSON 
S A MULLIN 
B COUR PALAIS 
J RIEGEL 
J WALKER 
PO DRAWER 28510 
SAN ANTONIO TX 78284 

TEXAS A&M UNIVERSITY 
PHYSICS DEPARTMENT 
ATTN DAN BRUTON 
COLLEGE STATION TX 77843-4242 

UC BERKELEY 
MECHANICAL ENGINEERING DEPT 
GRADUATE OFFICE 
ATTN KEZHUN LI 
BERKELEY CA 94720 

UC DAVIS 
INST OF THEORETICAL DYNAMICS 
ATTN E G PUCKETT 
DAVIS CA 95616 

UC LOS ANGELES 
DEPT OF MAT SCIENCE & ENGNG 
ATTN J J GILMAN 
LOS ANGELES CA 90024 
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UC SAN DIEGO 
DEPT APPL NECH & ENGR 
SVCSR011 
ATTN S NEMAT-NASSER 
M MEYERS 
LA JOLLA CA 92093-0411 

UNIV OF ALA HUNTSVILLE 
AEROPHYSICS RSCH CTR 
ATTN GARY HOUGH 
DAVID J LIQUORNIK 
PO BOX 999 
HUNTSVILLE AL 35899 

UNIV OF ALA HUNTSVILLE 
CIVIL ENGRNG DEPT 
ATTN WILLIAM P SCHONBERG 
HUNTSVILLE AL 35899 

UNIVERSITY OF CHICAGO 
DEPT OF THE GEOPHYSICAL SCIENCES 
ATTN G H MILLER 
5734 S ELLIS AVE 
CHICAGO IL 60637 

UNIVERSITY OF DAYTON RSCH INST 
KLA14 
ATTN N BRAR 
DGROVE 
A PIEKUTOWSKI 
300 COLLEGE PARK 
DAYTON OH 45469-0182 

UNIVERSITY OF DELAWARE 
DEPT OF MECHANICAL ENGINEERING 
ATTN PROF J GILLESPIE 
DEAN R B PIPES 
PROF J VINSON 
PROF D WILKINS 
NEWARK DE 19716 

UNIVERSITY OF MARYLAND 
ATTN PHYSICS DEPT (BLDG 082) 
COLLEGE PARK MD 20742 

UNIVERSITY OF PUERTO RICO 
DEPT CHEMICAL ENGINEERING 
ATTN L A ESTEVEZ 
MAYAGUEZ PR 00681-5000 

NO. OF 
COPIES   ORGANIZATION 

1        UNIVERSITY OF TEXAS 
DEPT OF MECHANICAL ENGINEERING 
ATTN ERIC P FAHRENTHOLD 
AUSTIN TX 78712 

1 VIRGINIA POLYTECHNIC INSTITUTE 
COLLEGE OF ENGINEERING 
ATTN R BATRA 
BLACKSBURG VA 24061-0219 

2 AEROJET 
ATTN J CARLEONE 
SKEY 
PO BOX 13222 
SACRAMENTO CA 95813-6000 

2 AEROJET ORDNANCE 
ATTN P WOLF 
G PADGETT 
1100BULLOCHBLVD 
SOCORRO NM 87801 

3 ALLIANT TECHSYSTEMS INC 
ATTN T HOLMQUIST MN11 2720 
RSTRYK 
GR JOHNSON MN11 2925 
600 SECOND ST NE 
HOPKINS MN 55343 

1        ALME AND ASSOCIATES 
ATTN MARVIN L ALME 
6219 BRIGHT PLUME 
COLUMBIA MD 21044-3790 

1 APPLIED RESEARCH ASSOC INC 
ATTN JEROME D YATTEAU 
5941 S MIDDLEFIELD RD SUITE 100 
LITTLETON CO 80123 

2 APPLIED RESEARCH ASSOC INC 
ATTN DENNIS GRADY 
FRANK MAESTAS 
4300 SAN MATEO BLVD SE 
ALBUQUERQUE NM 87110 

1        BATTELLE 
ATTN ROBER M DUGAS 
7501 S MEMORIAL PKWY SUITE 101 
HUNTSVILLE AL 35802-2258 
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BOEING AEROSPACE CO 
SHOCK PHYSICS & APPLIED MATH 
ENGINEERING TECHNOLOGY 
ATTN R HELZER 
T MURRAY 
J SHRADER 
PO BOX 3999 
SEATTLE WA 98124 

BOEING HOUSTON SPACE STN 
ATTN RUSSELL F GRAVES 
BOX 58747 
HOUSTON TX 77258 

BRIGS CO 
ATTN JOSEPH E BACKOFEN 
2668 PETERSBOROUGH ST 
HERNDON VA 20171-2443 

CALIFORNIA RSCH & TECHNOLOGY 
ATTN M MAJERUS 
PO BOX 2229 
PRINCETON NJ 08543    . 

CENTURY DYNAMICS INC 
ATTN N BIRNBAUM 
2333 SAN RAMON VALLEY BLVD 
SAN RAMON CA 94583-1613 

COMPUTATIONAL MECHANICS 
CONSULTANTS 
ATTN J A ZUKAS 
PO BOX 11314 
BALTIMORE MD 21239-0314 

CYPRESS INTERNATIONAL 
ATTN A CAPONECCHI 
1201 E ABINGDON DR 
ALEXANDRIA VA 22314 

DEFENSE TECHNOLOGY INTL. INC 
ATTN D E AYER 
THE STARK HOUSE 
22 CONCORD ST 
NASHUA NH 03060 

DESKIN RESEARCH GROUP INC 
ATTN EDWARD COLLINS 
2270 AGNEW RD 
SANTA CLARA CA 95054 

NO. OF 
COPIES   ORGANIZATION 

1       DOW CHEMICAL INC 
ORDNANCE SYSTEMS 
ATTN C HANEY 
A HART 
B RAFANIELLO 
800 BUILDING 
MIDLAND MI 48667 

1       G E DUVALL 
5814 NE 82ND COURT 
VANCOUVER WA 98662-5944 

3       DYNA EAST CORP 
ATTN P C CHOU 
R CICCARELLI 
WFLIS 
3620 HORIZON DRIVE 
KING OF PRUSSIA PA 19406 

3        DYNASEN 
ATTN JACQUES CHAREST 
MICHAEL CHAREST 
MARTIN LILLY 
20 ARNOLD PL 
GOLETACA 93117 

1       R J EICHELBERGER 
409 W CATHERINE ST 
BEL AIR MD 21014-3613 

1       ELORET INSTITUTE 
ATTN DAVID W BOGDANOFF MS 230 2 
NASA AMES RESEARCH CENTER 
MOFFETT FIELD CA 94035 

3       ENIG ASSOCIATES INC 
ATTN J ENIG 
D J PASTINE 
M COWPERTHWAITE 
SUITE 500 
11120 NEW HAMPSHIRE AVE 
SILVER SPRING MD 20904-2633 

1       EXPLOSIVE TECHNOLOGY 
ATTN M L KNAEBEL 
PO BOX KK 
FAIRFIELD CA 94533 
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COPIES 
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GB TECH LOCKHEED 
ATTN JAY LAUGHMAN 
2200 SPACE PARK SUITE 400 
HOUSTON TX 77258 

GB TECH LOCKHEED 
ATTN LUCILLE BORREGO C23C 
JOE FALCON JR C23C 
2400 NASA ROAD 1 
HOUSTON TX 77058 

GDLS 
38500 MOUND RD 
ATTN W BURKE MZ436-21-24 
G CAMPBELL MZ436-30-44 
D DEBUSSCHER MZ436-20-29 
J ERIDON MZ436-21-24 
W HERMAN MZ 435-01-24 
S PENTESCU MZ436-21-24 
STERLING HTS MI 48310-3200 

GENERAL RESEARCH CORP 
ATTN A CHARTERS 
TMENNA 
PO BOX 6770 
SANTA BARBARA CA 93160-6770 

GRC INTERNATIONAL 
ATTN TIMOTHY M CUNNINGHAM 
WILLIAM M ISBELL 
5383 HOLLISTER AVE 
SANTA BARBARA CA 93111 

INST OF ADVANCED TECHNOLOGY 
UNIVERSITY OF TX AUSTIN 
ATTN STEPHEN J BLESS 
JAMES CAZAMIAS 
HARRY D FAIR 
THOMAS M KIEHNE 
DAVID LITTLEFEELD 
MIKE NORMANDIA 
4030-2 W BRAKER LN 
AUSTIN TX 78759 

INTERNATIONAL RESEARCH ASSOC 
ATTN D ORPHAL 
4450 BLACK AVE 
PLEASANTON CA 94566 

NO. OF 
COPIES 

1 

ORGANIZATION 

INTERPLAY 
ATTN F E WALKER 
18 SHADOW OAK RD 
DANVILLE CA 94526 

KAMAN SCIENCES CORP 
ATTN DENNIS L JONES 
2560 HUNTINGTON AVE SUITE 200 
ALEXANDRIA VA 22303 

KAMAN SCIENCES CORP 
ATTN J ELDER 
RICHARD P HENDERSON 
DAVID A PYLES 
FRANK R SAVAGE 
JAMES A SUMMERS 
JAMES S WJLBECK 
TIMOTHY W MOORE 
THY YEM 
600 BLVD S SUITE 208 
HUNTSVILLE AL 35802 

KAMAN SCIENCES CORP 
ATTN SHELDON JONES 
GARY L PADEREWSKI 
ROBERT G PONZINI 
1500 GRDN OF THE GODS RD 
COLORADO SPRINGS CO 80907 

KAMAN SCIENCES CORP 
ATTN NASIT ARI 
STEVE R DIEHL 
WILLIAM DOANE 
VERNON M SMITH 
PO BOX 7463 
COLORADO SPRINGS CO 80933-7463 

D R KENNEDY & ASSOC INC 
ATTN D KENNEDY 
PO BOX 4003 
MOUNTAIN VIEW CA 94040 

KERLEY PUBLISHING SERVICES 
ATTN G I KERLEY 
PO BOX 13835 
ALBUQUERQUE NM 87192-3835 
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COPIES ORGANIZATION 

KTECH CORPORATION 
ATTN FRANK W DAVIES 
LARRY M LEE 
901 PENNSYLVANIA NE 
ALBUQUERQUE NM 87110 

LIVERMORE SOFTWARE TECH CORP 
ATTN J O HALLQUIST 
2876 WAVERLY WAY 
LIVERMORE CA 94550 

LOCKHEED MARTIN MISSLE & SPACE 
ATTN WILLIAM R EBERLE 
PO BOX 070017 
HUNTSVILLE AL 35807 

LOCKHEED MARTIN MISSILE & SPACE 
ATTN M A LEVIN ORG 81 06 BLDG 598 
M R MCHENRY 
T A NGO ORG 81 10 BLDG 157 
111 LOCKHEED WAY 
SUNNYVALE CA 94088 

LOCKHEED MISSILE & SPACE CO 
ATTN JOHN R ANDERSON 
WILLIAM C KNUDSON 
S KUSUMI 0 81 11 BLDG 157 
J PHILLIPS 0 54 50 
PO BOX 3504 
SUNNYVALE CA 94088 

LOCKHEED MISSILE & SPACE CO 
ATTN R HOFFMAN 
SANTA CRUZ FACILITY 
EMPIRE GRADE RD 
SANTA CRUZ CA 95060 

LOCKHEED NASA JSC 
SPACE SCIENCE BRANCH 
ATTN JAMES HYDE 
BOX 58561 MC B22 
HOUSTON TX 77258 

LOCKHEED MARTIN AEROSPACE 
ATTN D R BRAGG 
PO BOX 5837 MP 109 
ORLANDO FL 32855 

NO. OF 
COPIES   ORGANIZATION 

1       MCDONNELL DOUGLAS 
ASTRONAUTICS CO 
ATTN B L COOPER 
5301 BOLSA AVE 
HUNTINGTON BEACH CA 92647 

1       ORLANDO TECHNOLOGY INC 
ATTN DANIEL A MATUSKA 
PO BOX 855 
SHALIMAR FL 32579 

1       PHYSICAL SCIENCES INC 
ATTN PETER NEBOLSINE 
20 NEW ENGLAND BUS CTR 
ANDOWER MA 01810 

3       PHYSICS INTERNATIONAL 
ATTN R FUNSTON 
GFRAZIER 
LGARNETT 
PO BOX 5010 
SAN LEANDRO CA 94577 

1       PRC INC 
ATTN J ADAMS 
5166 POTOMAC DR #103 
KING GEORGE VA 22485-5824 

1       RAYTHEON ELECTRONIC SYSTEMS 
ATTN R KARPP 
50 APPLE HILL DRIVE 
TEWKSBURY MA 01876 

1       ROCKWELL INTERNATIONAL 
ROCKETDYNE DIVISION 
ATTN H LEJPER 
16557 PARK LN CIRCLE 
LOS ANGELES CA  90049 

1 ROCKWELL MISSILE SYS DIV 
ATTN T NEUHART 
1800 SATELLITE BLVD 
DULUTHGA 30136 

2 SAIC 
ATTN JAMES FURLONG 
GREGORY J STRAUCH 
1710 GOODRIDGE DR 
MCLEAN VA 22102 
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COPIES 
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ORGANIZATION 

SAIC 
ATTN MICHAEL W MCKAY 
10260 CAMPUS POINT DR 
SAN DIEGO CA 92121 

SHOCK TRANSIENTS INC 
ATTN DAVID DAVISON 
BOX 5357 
HOPKINS MN 55343 

SIMULATION & ENG CO INC 
ATTN ELSA I MULLINS 
STEVEN E MULLINS 
8840 HWY 20 SUITE 200 N 
MADISON AL 35758 

SOUTHERN RESEARCH INSTITUTE 
ATTN LINDSEY A DECKARD 
DONALD P SEGERS 
PO BOX 55305 
BIRMINGHAM AL 35255-5305 

SRI INTERNATIONAL 
ATTN JAMES D COLTON 
DCURRAN 
RKLOOP 
R L SEAMAN 
D A SHOCKEY 
333 RAVENSWOOD AVE 
MENLO PARK CA 94025 

TELEDYNE BROWN ENGR 
ATTN JIM W BOOTH 
MARTIN B RICHARDSON 
PO BOX 070007 MS 50 
HUNTSVILLE AL 35807-7007 

ZERNOW TECHNICAL SVCS INC 
ATTN LOUIS ZERNOW 
425 W BONITA AVE SUITE 208 
SAN DIMAS CA 91773 

NO. OF 
COPIES   ORGANIZATION 

ABERDEEN PROVING GROUND 

30     DIR, USARL 
ATTN:   AMSRL-WM, I MAY 

AMSRL-WM-MF, 
SCHOU 
DDANDEKAR 
A RAJENDRAN 

AMSRL-WM-PB, A ZIELINSKI 
AMSRL-WM-PD, G GAZONAS 
AMSRL-WM-T, W F MORRISON 
AMSRL-WM-TA, 

M BURKINS 
W GILLICH 
W BRUCHEY 
JDEHN 
G FILBEY 
W A GOOCH 
H W MEYER 
E J RAPACKI 
J RUNYEON 

AMSRL-WM-TB, 
RFREY 
P BAKER 
J STARKENBERG 

AMSRL-WM-TC, 
W S DE ROSSET 
T W BJERKE 
R COATES 
F GRACE 
K KIMSEY 
M LAMPSON 
D SCHEFFLER 
S SCHRAML 
B SORENSEN 
R SUMMERS 
W WALTERS 
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15     DIR, USARL 
AMSRL-WM-TD, 

A M DIETRICH 
K FRANK 
J HARRISON 
M RAFTENBERG 
G RANDERS-PEHRSON 
M SCHEIDLER 
S SCHOENFELD 
S SEGLETES (5 CP) 
J WALTER 
T WRIGHT 

AMSRL-WM-WD, A PRAKASH 
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NO. OF 
COPIES ORGANIZATION 

AERONAUTICAL & MARITIME 
RESEARCH LABORATORY 
ATTN N BURMAN 
S CIMPOERU 
DPAUL 
PO BOX 4331 
MELBOURNE VIC 3001 
AUSTRALIA 

EMBASSY OF AUSTRALIA 
ATTN R WOODWARD 
COUNSELLOR DEFENCE SCIENCE 
1601 MASSACHUSETTS AVE NW 
WASHINGTON DC 20036-2273 

ABTEILUNG FUER PHYSIKALISCHE 
CHEMIE 
MONTANUNIVERSITAET 
ATTN E KOENIGSBERGER 
A 8700 LEOBEN 
AUSTRIA 

PRB S A 
ATTN M VANSNICK 
AVENUE DE TERVUEREN 168 BTE 7 
BRUSSELS B 1150 
BELGIUM 

ROYAL MILITARY ACADEMY 
ATTN E CELENS 
RENAISSANCE AVE 30 
B1040 BRUSSELS 
BELGIUM 

BULGARIAN ACADEMY OF SCIENCES 
SPACE RESEARCH INSTITUTE 
ATTN VALENTIN GOSPODINOV 
1000 SOFIA PO BOX 799 
BULGARIA 

CANADIAN ARSENALS LTD 
ATTN P PELLETIER 
5 MONTEE DES ARSENAUX 
VILLIE DE GRADEUR PQ J5Z2 
CANADA 

DEFENCE RSCH ESTAB SUFFIELD 
ATTN D MACKAY 
RALSTON ALBERTA TOJ 2NO RALSTON 
CANADA 

NO. OF 
COPIES 

1 

ORGANIZATION 

DEFENCE RSCH ESTAB SUFFIELD 
ATTN CHRIS WEICKERT 
BOX 4000 MEDICINE HAT 
ALBERTA TIA 8K6 
CANADA 

DEFENCE RSCH ESTAB VALCARTIER 
ARMAMENTS DIVISION 
ATTN R DELAGRAVE 
2459 PIE XI BLVD N 
PO BOX 8800 
CORCELETTE QUEBEC GOA 1R0 
CANADA 

UNIVERSITY OF GUELPH 
PHYSICS DEPT 
ATTN C G GRAY 
GUELPH ONTARIO 
NIG 2W1 
CANADA 

CEA 
ATTN ROGER CHERET 
CEDEX 15 
313 33 RUE DE LA FEDERATION 
PARIS 75752 
FRANCE 

CEA 
CISI BRANCH 
ATTN PATRICK DAVID 
CENTRE DE SACLAY BP 28 
GIF SUR YVETTE 91192 
FRANCE 

CEA/CESTA 
ATTN ALAIN GEILLE 
BOX2LEBARP 33114 
FRANCE 

CENTRE D'ETUDES DE GRAMAT 
ATTN SOLVE GERARD 
CHRISTIAN LOUPIAS 
PASCALE OUTREBON 
J CAGNOUX 
C GALLIC 
J TRANCHET 
GRAMAT 46500 
FRANCE 
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COPIES ORGANIZATION 

CENTRE D'ETUDES DE LIMEIL-VALENTON 
ATTN CHRISTIAN AUSSOURD 
JEAN-CLAUDE BOZIER 
SAINT GEORGES CEDEX 
VILLENEUVE 94195 
FRANCE 

CENTRE D'ETUDES DE VAUJOURS 
ATTN PLOTARD JEAN-PAUL 
ERIC BOTTET 
TAT SIHN VONG 
BOITE POSTALE NO 7 
COUNTRY 77181 
FRANCE 

CENTRE DE RECHERCHES 
ET D'ETUDES D'ARCUEIL 
ATTN D BOUVART 
C COTTENNOT 
S JONNEAUX 
H ORSINI 
S SERROR 
F TARDIVAL 
16 BIS AVENUE PRIEUR DE 
LA COTE D'OR 
F94114 ARCUEJL CEDEX 
FRANCE 

DAT ETBS CETAM 
ATTN CLAUDE ALTMAYER 
ROUTE DE GUERRY BOURGES 
18015 
FRANCE 

ETBS DSTI 
ATTN P BARNJER 
ROUTE DE GUERAY 
BOITE POSTALE 712 
18015 BOURGES CEDEX 
FRANCE 

FRENCH GERMAN RESEARCH INST 
ATTN CHANTERET P-Y 
CEDEX 12 RUE DE I'INDUSTRJE 
BP301 
F68301 SAINT-LOUIS 
FRANCE 

NO. OF 
COPIES ORGANIZATION 

FRENCH GERMAN RESEARCH INST 
ATTN HANS-JURGEN ERNST 
FRANCIS JAMET 
PASCALE LEHMANN 
KHOOG 
HLERR 
CEDEX 5 5 RUE DU GENERAL 
CASSAGNOU 
SAINT LOUIS 68301 
FRANCE 

LABORATOIRE DE TECHNOLOGIE DES 
SURFACES 
ECOLE CENTRALE DE LYON 
ATTN VINET P 
BP163 
69131 ECULLY CEDEX 
FRANCE 

BATTELLE INGENIEUTECHNIK GMBH 
ATTN W FUCHE 
DUESSELDORFFER STR 9 
ESCHBORN D 65760 
GERMANY 

CONDAT 
ATTN J KJERMEIR 
MAXIMILIANSTR 28 
8069 SCHEYERN FERNHAG 
GERMANY 

DEUTSCHE AEROSPACE AG 
ATTN MANFRED HELD 
POSTFACH 13 40 
D 86523 SCHROBENHAUSEN 
GERMANY 

DJEHL GBMH AND CO 
ATTN M SCHDLDKNECHT 
FISCHBACHSTRASSE 16 
D 90552 RÖTBENBACH AD PEGNITZ 
GERMANY 
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NO. OF 
COPIES ORGANIZATION 

ERNST MACH INSTITUT 
ATTN VOLKER HOHLER 
E SCHMOLINSKE 
E SCHNEIDER 
ASTILP 
KTHOMA 
ECKERSTRASSE 4 
D-7800 FREIBURG I BR 791 4 
GERMANY 

EUROPEAN SPACE AGENCY 
ATTN WALTER FLURY 
ESOC5 
ROBT BOSCHT STRASSE 
DARMSTADT 6100 
GERMANY 

FRAUNHOFER INSTITUT FUER 
KURZZEITDYNAMIK 

ERNST MACH INSTITUT 
ATTN H ROTHENHAEUSLER 
HSENF 
E STRASSBURGER 
HAUPTSTRASSE 18 
D79576 WEIL AM RHEIN 
GERMANY 

FRENCH GERMAN RESEARCH INST 
ATTN HARTMUTH F LEHR 
ROLF HUNKLER 
ERICH WOLLMANN 
POSTFACH 1260 
WEIL AM RHEIN D-79574 
GERMANY 

IABG 
ATTN M BORRMANN 
H G DORSCH 
EINSTEINSTRASSE 20 
D 8012 OTTOBRUN B MUENCHEN 
GERMANY 

INGENIEURBÜRO DEISENROTH 
AUF DE HARDT 33 35 
D5204 LOHMAR 1 
GERMANY 

NO. OF 
COPIES ORGANIZATION 

TU CHEMNITZ-ZWICKAU 
ATTN I FABER 
L KRUEGER 
LOTHAR MEYER 
FAKULTAET FUER MASCHINENBAU U. 

VERFAHRENSTECHNIK 
SCHEFFELSTRASSE 110 
09120 CHEMNITZ 
GERMANY 

TECHNISCHE UNIVERSITÄT MUENCHEN 
ATTN EDUARD B IGENBERGS 
RICHARD WAGNER STR 18 111 
MUENCHEN 2 D8000 
GERMANY 

BHABHA ATOMIC RESEARCH CENTRE 
HIGH PRESSURE PHYSICS DIVISION 
ATTN N SURESH 
TROMBAY BOMBAY 400 085 
INDIA 

RAFAEL BALLISTICS CENTER 
ATTN EREZ DEKEL 
YEHUDA PARTOM 
G ROSENBERG 
Z ROSENBERG 
Y YESHURUN 
PO BOX 2250 
HAIFA 31021 
ISRAEL 

TECHNION INST OF TECH 
FACULTY OF MECH ENGNG 
ATTN SOL BODNER 
TECHNION CITY 
HAIFA 32000 
ISRAEL 

CRC RESEARCH INST INC 
ATTN MASAHIDE KATAYAMA 
STRUCTURAL ENGINEERING DEPT 
1 3 316 NAKASE MIHAMA KU 
CHIBA SHI 261 01 
JAPAN 
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ESTEC CS 
ATTN DOUGLAS CASWELL 
BOX 200 NOORDWIJK 
2200 AG 
NETHERLANDS 

EUROPEAN SPACE AGENCY ESTEC 
ATTN LUCY BERTHOUD 
MICHEL LAMBERT 
POSTBUS BOX 299 NOORDWIJK 
NL2200 AG 
NETHERLANDS 

PRINS MAURITS LABORATORY 
ATTN H J REITSMA 
EDWARD VAN RIET 
H PASMAN 
R YSSELSTEIN 
TNO BOX 45 
RIJSWIJK 2280AA 
NETHERLANDS 

ROYAL NETHERLANDS ARMY 
ATTN J HOENEVELD 
V D BURCHLAAN 31 
PO BOX 90822 
2509 LS THE HAGUE 
NETHERLANDS 

HIGH ENERGY DENSITY RESEARCH CTR 
ATTN VLADIMIR E FORTOV 
GENADIII KANEL 
V A SKVORTSOV 
O YU VOJOBIEV 
IZHORSKAJA STR 13/19 
MOSCOW 127412 
RUSSIAN REPUBLIC 

INSTITUTE OF CHEMICAL PHYSICS 
ATTN A YU DOLGOBORODOV 
KOSYGIN ST 4 V 334 
MOSCOW 
RUSSIAN REPUBLIC 

NO. OF 
COPIES ORGANIZATION 

INSTITUTE OF CHEMICAL PHYSICS 
RUSSIAN ACADEMY OF SCIENCES 
ATTN A M MOLODETS 
S V RAZORENOV 
A VUTKIN 
142432 CHERNOGOLOVKA 
MOSCOW REGION 
RUSSIAN REPUBLIC 

INSTITUTE OF MECH ENGINEERING PROBLEMS 
ATTN V BULATOV 
D INDEITSEV 
Y MESCHERYAKOV 
BOLSHOY, 61, V.O. 
ST PETERSBURG 199178 
RUSSIAN REPUBLIC 

IOFFE PHYSICO TECHNICAL INSTITUTE 
DENSE PLASMA DYNAMICS 
LABORATORY 
ATTN EDWARD M DROBYSHEVSKI 
A KOZHUSHKO 
ST PETERSBURG 194021 
RUSSIAN REPUBLIC 

IPE RAS 
ATTN A A BOGOMAZ 
DVORTSOVAIA NAB 18 
ST PETERSBURG 
RUSSIAN REPUBLIC 

LAVRENTYEV INST. HYDRODYNAMICS 
ATTN LEV A MERZHIEVSKY 
VICTOR V SILVESTROV 
NOVOSIBIRSK 630090 
RUSSIAN REPUBLIC 

MOSCOW INST OF PHYSICS & TECH 
ATTN S V UTYUZHNIKOV 
DEPT OF COMPUTATIONAL 

MATHEMATICS 
DOLGOPRUDNY 1471700 
RUSSIAN REPUBLIC 

RESEARCH INSTITUTE OF MECHANICS 
NIZHNIY NOVGOROD STATE UNIVERSITY 
ATTN A SADYRIN 
P.R. GAYARINA 23 KORP 6 
NIZHNIY NOVGOROD 603600 
RUSSIAN REPUBLIC 
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SAMARA STATE AEROSPACE UMV 
ATTN L G LUKASHEV 
SAMARA 
RUSSIAN REPUBLIC 

TOMSK BRANCH OF THE INSTITUTE 
FOR STRUCTURAL MACROKINETICS 
ATTN V GORELSKI 
8 LENIN SQ GSP 18 
TOMSK 634050 
RUSSIAN REPUBLIC 

UNIVERSIDAD DE CANTABRIA 
FACULTAD DE CIENCIAS 
DEPARTMENTO DE FISICA APLICADA 
ATTN J AMOROS 
AVDA DE LOS CASTROS S/N 
SANTANDER 
SPAIN 

DEPARTMENTO DE QUIMICA FISICA 
FACULTAD DE CIENCIAS QUIMICAS 
UNIVERSIDAD COMPLUTENSE DE 
MADRID 
ATTN V G BAONZA 
M TARAVILLO 
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